文章编号: 1000-4750(2017)12-0022-09

考虑骨料尺寸的混凝土岩石边界效应断裂模型

管俊峰^{1,2}, 王 强¹, HU Xiaozhi², 白卫峰¹, 姜 斌^{2,3}

(1. 华北水利水电大学土木与交通学院,河南,郑州 450045; 2. 西澳大学机械与化学学院,澳大利亚,珀斯,WA6009;3. 北京科技大学材料科学与工程学院,北京 100083)

摘 要: 该文比较了边界效应模型(BEM)和尺寸效应模型(SEM)在研究材料断裂性能方面的不同。提出了由处于 准脆性断裂状态的三点弯曲试件的峰值荷载 *P*_{max},同时确定材料参数——断裂韧度 *K*_{IC} 与拉伸强度 *f*_i的理论与方 法。由于实验室条件下混凝土试件高度 *W* 与骨料最大粒径 *d*_{max} 的比例 *W*/*d*_{max} 约为 5~20,试件的非均质性明显, 破坏为准脆性断裂控制。因此,区别于以连续介质力学为基础的应用于准脆性断裂研究的力学模型,该文研究将 骨料最大粒径 *d*_{max} 引入相应的断裂模型解析表达式中,由参数组合β·*d*_{max}来计算结构峰值状态对应的裂缝扩展量, 通过离散参数β的不同取值,实现了对材料参数——断裂韧度与拉伸强度的准确预测。基于不同学者的相同尺寸 *W* 而不同初始裂缝长度 *a*₀,以及相同初始缝高比 *a*₀/*W* 而不同尺寸 *W* 的几何相似的砂浆、混凝土及岩石类材料试 件的试验成果(骨料最大粒径 *d*_{max}从 1.2 mm~40 mm 变化),验证了所提理论与方法的合理性。 关键词:准脆性断裂;骨料粒径;断裂韧度;拉伸强度;边界效应;尺寸效应 中图分类号:TU528.1;TU501 文献标志码:A doi: 10.6052/j.issn.1000-4750.2016.08.0652

BOUNDARY EFFECT FRACTURE MODEL FOR CONCRETE AND GRANITE CONSIDERING AGGREGATE SIZE

GUAN Jun-feng^{1,2}, WANG Qiang¹, HU Xiaozhi², BAI Wei-feng¹, JIANG Bin^{2,3}

(1. School of Civil Engineering and Communication, North China University of Water Resources and Electric Power, Zhengzhou, Henan 450045, China;

2. School of Mechanical and Chemical Engineering, University of Western Australia, Perth, WA 6009, Australia;

3. School of Materials science and Engineering, University of Science and Technology Beijing, Beijing 100083, China)

Abstract: The application of boundary effect model (BEM) and size effect model (SEM) on fracture behavior of materials were compared. A theory and the associated method for determining the material constants (fracture toughness K_{IC} and tensile strength f_t) were proposed using experimental peak loads P_{max} from three-point-bend (3-p-b) specimens with quasi-brittle fracture controlled. The ratio of 3-p-b concrete specimens size W to maximum aggregate size d_{max} under laboratory conditions is around 5 to 20. These concrete specimens are heterogeneous, where quasi-brittle fracture is dominant. In contrast to the fracture mechanical models those are based on continuum mechanics and applied to quasi-brittle fracture, the maximum aggregate size d_{max} was introduced in the analytical formula of the proposed fracture model. The stable crack growth corresponding to the peak load of these specimens can be evaluated based on parameter combination $\beta \cdot d_{max}$, and precisely predict results can be obtained by using different values of discrete number β . The validity of the theory and the proposed

基金项目: 国家自然科学基金项目(51779095, 51679092); 澳大利亚国家基金项目(DP0346198); 郑州市科技攻关项目(153PKJGG111); 河南省 高等学校青年骨干教师资助计划项目(2013GGJS-084)

收稿日期: 2016-08-26; 修改日期: 2016-12-12

通讯作者: HU Xiaozhi(1957一), 男,澳大利亚珀斯人,教授,博士,博导,从事材料基本理论与应用研究(E-mail: xiao.zhi.hu@uwa.edu.au).

作者简介: 管俊峰(1980-), 男,河南许昌人,副教授,博士,从事混凝土断裂力学研究(E-mail: guanjunfeng1980@126.com);

王 强(1991-), 男, 河南驻马店人, 硕士生, 从事混凝土断裂力学研究(E-mail: 547083007@qq.com);

白卫峰(1982-), 男,河南鹤壁人,副教授,博士,从事混凝土损伤与断裂力学研究(E-mail: yf9906@163.com);

姜 斌(1984-),男,浙江临安人,博士生,从事材料断裂力学研究(E-mail: jiangbin311@163.com).

method has been confirmed by test results from different scholars, including mortar, concrete and granite material $(d_{max}=1.2 \text{ mm to } 40 \text{ mm})$, linked with same specimen size W but with different initial crack length a_0 and geometrically similar or with a same ratio of initial crack length to specimens size a_0/W but different W.

Key words: quasi-brittle fracture; aggregate size; fracture toughness; tensile strength; boundary effect; size effect

实验室条件下的混凝土三点弯曲断裂试验所 用试件高度 W 一般为 100 mm~400 mm, 如: 国际 材料与结构研究实验联合会 RILEM 规范^[1]推荐水 泥砂浆和混凝土材料三点弯曲断裂试验的试件高 度 W=100 mm~400 mm; 中国水工混凝土断裂试验 规程 DL/T5332-2005^[2]推荐三点弯曲试件高度 W= 200 mm。则试件高度 W 与其骨料最大粒径 dmax (实 验室条件下一般为 5 mm~40 mm)的比值 W/d_{max}≈ 5~20,则对应试件韧带高度 W-a₀(a₀为试件的初始 裂缝长度)与 d_{max} 的比值(W-a₀)/d_{max} 仅为 3-10。由 此可见,对于实验室条件下的三点弯曲断裂试件, 其骨料粒径尺寸相对于其自身结构或构件尺寸不 能忽略(W/d_{max}<20),试件的非均质特性明显,断裂 破坏呈现准脆性断裂特征。因此,若仍将其视为均 质连续体,而不考虑骨料粒径的重要影响,则不能 真实反映其断裂破坏的本质机理。

前期学者们建立的可描述材料准脆性断裂特 性的力学模型,基于连续介质力学理论,如:虚拟 裂缝模型^[3]、尺寸效应模型^[4-5]、双参数模型^[6-7]、 有效裂缝模型^[8]、分形模型^[9]、双K模型^[10-13]、边 界效应模型[14-16]等。上述模型的有效性已得到相关 试验的验证,并取得了广泛应用。但是,模型中对 应的理论表达式中都未包含骨料颗粒尺寸这一重 要参数。虽然学者们进行了骨料粒径对材料断裂特 性影响的试验研究(断裂能[17-20]、断裂韧度[21-22]、 拉伸软化曲线[23]),但并未能建立起可考虑骨料颗粒 影响的理论模型。考虑到实验室条件下试件的 W/dmax 或(W-a0)/dmax 相对较小,因此,现有的应用 于混凝土类材料研究的连续介质力学模型需进行 修正。三维数值模型[24-26]虽可模拟骨料颗粒的物理 形状,并在一定程度上解释准脆性材料的断裂破坏 机理,但却未能给出断裂破坏过程的解析闭合解, 且数值仿真结果依赖于结构尺寸及仿真单元的材 料参数选取等条件。

目前拉伸强度测定所用大尺寸混凝土试件的 制作及相应试验都较难完成,而小尺寸试件结果存 在明显的尺寸效应。美国 ASTM E399 规范^[27]规定 满足线弹性断裂力学条件的试件尺寸须足够大(如, 岩石试件一般需超过 300 mm,砂浆试件一般需超 过 500 mm,混凝土试件一般需超过 1000 mm),才 能忽略峰值荷载时裂缝尖端的虚拟裂缝扩展,而得 到无尺寸效应的材料断裂韧度。但是,普通实验室 一般不具备浇筑和测试大尺寸试件的能力。实验室 条件下试件的 W/dmax 或(W-a_0)/dmax 相对较小而处于 弹塑性或准脆性断裂状态。如何由实验室条件小尺 寸试件,确定无尺寸效应的断裂参数或强度参数, 现有的断裂模型还未能给出满意答案。并且,目前 确定准脆性材料的断裂韧度和拉伸强度需采用不 同型式的试样与加载方法。而用相同测试方法和试 样,同时确定给出准脆性材料的断裂韧度及拉伸强 度的模型与方法还未见详细报道。

本文分析了尺寸效应模型(SEM)的局限;基于 边界效应理论的物理背景,阐述了小尺寸三点弯曲 试件的准脆性断裂破坏机理,建立了由准脆性断裂 试件同时确定材料参数——断裂韧度 $K_{\rm IC}$ 与拉伸强 度 $f_{\rm f}$ 的理论与方法。考虑实验室条件下试件的非均 质与不连续断裂破坏的本质特性,将试件峰值荷载 对应的不连续裂缝扩展量 $\Delta a_{\rm fc}$ 相关于骨料最大粒 径 $d_{\rm max}$ 和离散参数 β ,明晰了骨料粒径对材料断裂 特性的重要影响,由离散参数 β 的不同取值,实现 了 $K_{\rm IC}$ 和 $f_{\rm f}$ 的准确预测。基于 $d_{\rm max}$ 从 1.2 mm~40 mm 变化的砂浆、混凝土及岩石类材料的三点弯曲试件 试验成果,验证了本文模型与方法的有效性。

1 尺寸效应模型(SEM)的局限

Bažant 和 Hoover^[4-5]提出的尺寸效应模型 (SEM),是当前国际上研究材料准脆性断裂特性的 著名模型。

当试件缝高比 *α*=*a*₀/*W*>0.1 时, SEM 的两参数 方程(2P-SEM)为:

$$\sigma_{\rm N} = \frac{B' f_t}{\sqrt{1 + W / D_0}} \tag{1}$$

式中: σ_N 为结构破坏时的名义应力;W为试件高度; B'_f , 和 D_0 为两个经验参数,由试验数据拟合确定。

如图 1,实验室条件下试件尺寸 W 与骨料最大 粒径 dmax 的比值一般仅为 5~20,则峰值荷载时的裂 缝扩展量受到限制,β一般取值为1~2。因此,虚 拟裂缝扩展区内的应力分布不需要复杂函数表示,

$$\sigma_{\rm N} = f_{\rm r}^{\infty} \left[1 + \frac{rD_{\rm b}}{W + l_{\rm p}} \right]^{1/r} \tag{2}$$

式中, f_r^{∞} 、 D_b 、 l_p 、r为四个经验参数,须通过试 验数据拟合确定。

当试件缝高比 0<α<0.1 时,不考虑试件初始缺 陷时,SEM 的十二参数方程为: $\sigma_{\rm N}$ =

$$\left[\frac{E'G_{\rm f}}{g_0W + (1-\lambda)c_{\rm f}g_0' + \lambda E'G_{\rm f}/f_{\rm res}^2}\right]^{1/2} \left(1 + \frac{r\lambda D_{\rm b}}{\overline{D} + l_{\rm p}}\right) (3)$$

$$\lambda = e^{[\alpha_0 (D) \alpha_a + i \gamma_1]} \tag{4}$$

$$\overline{D} = \frac{2\varepsilon}{\psi \varepsilon_{,n}} \tag{5}$$

式(3)中含有 G_{f} 、 c_{f} 、 $f_{r\infty}$ 、 D_{b} 、r、k、p、q、 l_{p} 、 ε 、 ε_{n} 、 ψ 多达 12 个经验参数。

当试件缝高比 0<α<0.1 时,考虑试件初始缺陷 时,SEM 的十五参数方程为:

$$\sigma_{\rm N} = \left[\frac{E'G_{\rm f}}{g_0W + (1-\lambda)c_{\rm f}g_0' + \lambda E'G_{\rm f} / f_{\rm r\infty}^2}\right]^{1/2} \times \left[\left(\frac{\lambda l_{\rm s}}{W + l_{\rm s}}\right)^{rn/m} + \frac{r\lambda D_{\rm b}}{\overline{D} + l_{\rm p}}\right]^{1/r}$$
(6)

式(6)中含有 $G_{\rm f}$ 、 $c_{\rm f}$ 、 $f_{\rm r\infty}$ 、 D_b 、r、k、p、q、 $l_{\rm p}$ 、 $l_{\rm s}$ 、 ε 、 $\varepsilon_{,n}$ 、 ψ 、n、m 多达 15 个经验参数。

采用 SEM 四个主要方程,仅能对试验数据进 行拟合分析^[4-5,28],即使给出材料参数——断裂韧 度 K_{IC} 和拉伸强度 f_t,也不能对试件结构破坏进行 预测。

2 边界效应模型(BEM)的物理背景

2.1 边界效应模型(BEM)的预测方程

BEM 的解析表达式为[14-16,29-32]:

$$\sigma_{\rm n} = \frac{f_{\rm t}}{\sqrt{1 + \frac{a_{\rm e}}{a_{\rm r}^*}}} \tag{7}$$

式中: σ_n 为考虑初始裂缝影响的名义应力; f_t 为材 料的拉伸强度; a^{*}_∞为材料的特征裂缝长度, 其值可 由两个材料破坏准则——断裂韧度准则 KIC 和强 度准则 f_t 的交点得到,即 $a_{\infty}^* = 0.25 \cdot (K_{\rm IC} / f_t)^2$,因 此其也是材料参数; ae 为反映试件几何结构的参 数——等效裂缝长度 ae。

$$a_{\rm e}(\alpha, a_0) = B(\alpha) \times a_0 \tag{8}$$

$$B(\alpha) = \left[\frac{A(\alpha) \times Y(\alpha)}{1.12}\right]^2 \tag{9}$$

由式(8)可知,参数 ae 只与初始裂缝长度 ao 和结构 几何 A(a)与 Y(a)有关。对三点弯曲试件^[14-16,29-32]:

$$A(\alpha) = \frac{\sigma_{\rm N}}{\sigma_{\rm n}} = (1 - \alpha)^2 \tag{10}$$

Y(a)值可由应力强度因子手册查取^[33],试件有 效长度 S 与试件高度 W 的比值 S/W=4 时:

$$Y(\alpha) = \frac{1.99 - \alpha(1 - \alpha)(2.15 - 3.93\alpha + 2.7\alpha^2)}{\sqrt{\pi}(1 + 2\alpha)(1 - \alpha)^{3/2}}$$
(11)

BEM 中不含经验参数, 断裂韧度 K_{IC} 与拉伸强 度 f_t 以及 a_{∞}^* 都为材料参数。 a_e 为试件几何结构参数。 若给出材料参数 K_{IC} 与 f, 材料破坏即可预测。

2.2 离散参数 β 及物理意义

图1为考虑三点弯曲试件峰值荷载 Pmax 对应的 裂缝稳定扩展量 $\Delta a_{\rm fc}$ 的应力分布^[29-32]。

Fig.1 Crack growth $\Delta a_{\text{fic}} = \beta \cdot d_{\text{max}}$ at P_{max} of 3-p-b specimen

虚拟裂缝扩展中裂缝面的骨料摩擦咬合与骨 料互锁,以及骨料拔出而形成粘聚力的过程,主要 围绕骨料颗粒进行。因此,从裂缝断裂机理出发, 峰值荷载 Pmax 对应的虚拟裂缝扩展量 Δaffc 相关于 骨料最大粒径 dmax 更具物理意义:

式中: Δa_{fic} 为 P_{max} 对应的虚拟裂缝扩展量; d_{max} 为 骨料最大粒径或最大颗粒尺寸;β为衡量不同试件 裂缝断裂离散性的离散参数,其值取决于试件浇筑 质量、骨料分布与骨料体积含量等因素。若 dmax 含

量不占主导,可取比例含量相对最高的骨料粒径尺

寸替代 d_{max}。

$$\Delta a_{\rm fic} = \beta \cdot d_{\rm max} \tag{12}$$

可按图 1 的直线分布简化处理。对于不同试件,参数 β 可个性化取值。参数 β 取值的不确定性恰恰确定的反映了准脆性断裂材料的真实特性。例如:浇筑一组 n 个试件尺寸完全相同的混凝土试件,由于每个试件个体的差异,会测得 n 个完全不同的峰值荷载 P_{max} · P_{max} 对应的裂缝扩展量 Δa_{fc} 也各不相同,即 β 对应于 n 个不同值(如 β =0.5、1.0、1.5、2.0…),若这一组 n 个试件取离散参数 β 为统一值(如 β =1.0),为统计意义上的平均值概念,即 n 个试件 在峰值状态的平均扩展量。

由此,将材料参数——骨料最大粒径 *d*_{max} 引入 BEM 的具体表达式中。式(7)进一步可改进为:

$$\sigma_{\rm n}(P_{\rm max}, \Delta a_{\rm fic}) = \sigma_{\rm n}(P_{\rm max}, \beta \cdot d_{\rm max}) = \frac{f_{\rm t}}{\sqrt{1 + \frac{a_{\rm e}}{a_{\infty}^*}}}$$
(13)

对式(13)变换形式可得:

$$\frac{1}{\sigma^2(P_{\max}, \beta \cdot d_{\max})} = \frac{1}{f_t^2} + \frac{4a_e}{K_{\rm IC}^2}$$
(14)

可见,只需试件的峰值荷载 P_{max} ,即可由试件的几何结构(a_{e}),推求其材料参数(K_{IC} 、 $f_{\text{t}} \cap a_{\infty}^{*}$)。

基于图 1 所示应力分布,由力和力矩平衡可得 $\sigma_n(P_{max}, \beta \cdot d_{max})$ 具体表达式为^[29-32]: $\sigma_n(P_{max}, \beta \cdot d_{max}) =$

$$\frac{\frac{S}{B}P_{\max}}{\frac{W_2 \cdot W_3^3 + W_2^4 + 6(\beta \cdot d_{\max}) \cdot W_2^2 \cdot W_1}{3W_1^2} + 2(\beta \cdot d_{\max})^2}$$

(15)

式中: S 为试件有效跨长; B 为试件厚度; W 为试 件 高度, $W_1=W-a_0$; $W_2=W_1-(\beta \cdot d_{\max})$; $W_3=W_1+(\beta \cdot d_{\max})$ 。

本文进一步采用不同学者的试验成果,来验证 BEM 的适用性与有效性。

3 不同学者试验结果验证 BEM

3.1 试件尺寸 W相同而缝高比α不同

1) 砂浆试件(d_{max}=1.2 mm)

采用文献[34]的砂浆三点弯曲试件为研究对 象,试件的骨料最大粒径 $d_{max}=1.2 \text{ mm}$ 。试件尺寸 $S \times B \times W=400 \text{ mm} \times 100 \text{ mm} \times 100 \text{ mm}$,初始缝高比 a=0.30~0.55, $W/d_{max}=83$ 。基于解析表达式(14)和各试 件的实测峰值荷载 P_{max} ,即可拟合确定其材料参数 K_{IC} , f_{t} πa_{∞}^{*} .

图 2 为 β =0.0(不考虑虚拟裂缝扩展)、1.0、2.0 时回归分析拟合得到水泥砂浆材料的 K_{IC} 、 $f_t = a_{\infty}^*$ 。

Fig.2 Determination of $K_{\rm IC}$, f_t and a_{∞}^* of mortar from specimens with $W/d_{\rm max} = 83$

β 取不同值时确定的砂浆材料参数列入表 1。

文献[34]中给出 150 mm×150 mm×150 mm 砂浆立 方体抗压强度 f_{cu} =47.75 MPa,若取砂浆材料的抗拉 强度为抗压强度的 1/8~1/12^[35],则拉伸强度 f_t 近似 估计为 4 MPa~6 MPa。由双 K 模型计算峰值荷载 P_{max} 对应的失稳 初度 K_{lc}^{un} =0.833 MPa•m^{1/2}~ 1.307 MPa•m^{1/2[34]}。由表 1 可见,由于 *W*/ d_{max} =83 相对较大, β 取值在 1.0~2.0 范围,都可获取合理的 砂浆材料参数。特别地,当 β=1.0 时,预测砂浆的 材料参数就有足够的精度。因此,为方便计,实际 设计时离散参数可取定值 β=1.0。

学

表1	由 W/d _{max} = 83 试件确定的砂浆材料参数
Table 1	Results of material constant of mortar from

specimens with $W/d_{\text{max}} = 83$

β	$K_{\rm IC}/({\rm MPa} \cdot {\rm m}^{1/2})$	ft/MPa	a^*_{∞} /mm
0	0.80	7.60	2.75
0.2	0.80	7.29	3.03
0.4	0.81	7.02	3.33
0.6	0.82	6.77	3.63
0.8	0.82	6.54	3.97
1.0	0.83	6.32	4.31
1.2	0.85	6.13	4.75
1.4	0.85	5.95	5.13
1.6	0.86	5.78	5.54
1.8	0.88	5.63	6.08
2.0	0.89	5.48	6.53
2.2	0.89	5.35	7.00
2.4	0.91	5.21	7.67
2.6	0.92	5.23	7.77
2.8	0.94	4.98	8.96
3.0	0.95	4.87	9.57

2) 混凝土试件(d_{max}=20 mm)

采用文献[34]混凝土三点弯曲试件为研究对 象, *d*_{max}=20 mm, *S*×*B*×*W*=400 mm×100 mm× 100 mm, 初始缝高比 α=0.30~0.55, *W*/*d*_{max}=5。

图 3 为 β = 0.8、1.0 时, 拟合得到混凝土材料的 K_{IC} 、 $f_{\text{t}} \subseteq a_{\infty}^*$ 。

specimens with $W/d_{\text{max}} = 5$

 β 取不同值时确定的混凝土材料参数列入表 2。

文献[34]中给出 150 mm×150 mm×150 mm 混凝土 立方体抗压强度 f_{cu} =44.65 MPa,则拉伸强度 f_t 近似 估计 3.7 MPa~5.6 MPa。由双 K 模型计算 P_{max} 对应 的 失 稳 韧 度 K_{lc}^{un} = 1.625 MPa•m^{1/2}~ 1.758 MPa•m^{1/2}[34]。

表 2	由 W/d _{max} =5 试件确定的混凝土材料参数
-----	--------------------------------------

Table 2	Results of material constant of concrete from
	specimens with $W/d_{max}=5$

β	$K_{\rm IC}/({\rm MPa} \cdot {\rm m}^{1/2})$	ft/MPa	$a^*_{\scriptscriptstyle\infty}$ /mm
	0.0	-	_
0.2	1.04	21.82	0.57
0.4	1.10	9.81	3.15
0.6	1.22	6.98	7.59
0.7	1.32	6.16	11.43
0.8	1.49	5.55	18.05
0.9	1.75	5.06	30.08
1.0	2.24	4.65	57.75
1.1	4.47	4.31	269.00
	1.2	-	_

由表 2 可见,相比与表 1 砂浆的计算结果,表 2 中 β 仅能取值 0.8~1.0 范围,才能获取合理材料参数。原因为表 2 对应的混凝土试件的 W/d_{max} 仅仅为 5,韧带高度(W-a₀)即裂缝扩展区域非常小,峰值荷 载时的裂缝扩展量被限制。离散参数 β=1.0,即可 满足设计精度要求。

3) 岩石试件(d_{max}=2.5 mm)

采用文献[30,36]的岩石材料三点弯曲试件为 研究对象,最大颗粒尺寸 $d_{max}=2.5 \text{ mm}$ 。试件按尺 寸不同分为两组:第一组试件尺寸为 $S \times B \times W=$ 120 mm×25 mm×30 mm, $W/d_{max}=12$,初始缝高比 $\alpha=0.0\sim0.6$;第二组 $S \times B \times W=280 \text{ mm} \times 25 \text{ mm} \times 70 \text{ mm}$, $W/d_{max}=28$, $\alpha=0.0\sim0.75$ 。该岩石材料的 $f_t=7$ MPa~ 9 MPa^[30,36]。

图 4 为基于 $W/d_{max}=12$ 试件的 P_{max} , 取 $\beta=1.0$ 、 2.0 时,回归分析确定岩石材料的 K_{IC} 、 $f_t 与 a_{\infty}^*$ 。

对 *W*/*d*_{max}=12 试件, β 取不同值时确定的岩石 材料参数列入表 3。由表 3 可见, β 取 0.8~2.0, 由

表 3 由 W/d_{max}=12 试件确定的岩石材料参数

Table 3	Results of material constant of concrete from
	specimens with $W/d_{max}=12$

	-		
β	$K_{\rm IC}/({\rm MPa} \cdot {\rm m}^{1/2})$	ft/MPa	a^*_{∞} /mm
0	6.32	9.95	101
0.2	3.65	9.58	36.33
0.4	3.16	9.25	29.25
0.6	2.58	8.91	21.00
0.8	2.24	8.61	16.88
1.0	2.00	8.33	14.40
1.2	1.83	8.09	12.75
1.4	1.69	7.88	11.50
1.6	1.58	7.58	10.88
1.8	1.49	7.37	10.22
2.0	1.38	7.16	9.29
3.0	1.07	6.26	7 29

W/*d*_{max}=12 试件确定岩石材料性能,都能得到较为 合理的结果。

图 5 为基于 $W/d_{max}=28$ 试件的 P_{max} , 取 $\beta=1.0$ 、 2.0 时回归分析确定岩石材料的 K_{IC} 、 $f_t 与 a_{\infty}^*$ 。

对 $W/d_{max}=28$ 试件, β 取不同值时确定的岩石 材料参数列入表 4。由表 4 可见 β 取 0.6~3.0,由 $W/d_{max}=28$ 试件确定岩石材料性能,都能得到较为 合理的结果。

表 4 由 W/d_{max}=28 试件确定的岩石材料参数

Table 4 Results of material constant of concrete from specimens with $W/d_{max}=28$

β	$K_{\rm IC}/({\rm MPa} \cdot {\rm m}^{1/2})$	<i>f</i> _t /MPa	$a^*_{\scriptscriptstyle\infty}$ /mm
0	2.00	10.15	9.70
0.2	2.00	10.00	10.00
0.4	1.91	9.85	9.36
0.6	1.91	9.67	9.73
0.8	1.83	9.49	9.25
1.0	1.75	9.37	8.77
1.2	1.69	9.21	8.43
1.4	1.69	9.05	8.71
1.6	1.63	8.91	8.40
1.8	1.58	8.77	8.13
2.0	1.53	8.61	7.94
3.0	1.38	7.98	7.48
4.0	1.26	7.41	7.28
5.0	1.15	6.92	6.97

由表 3 与表 4 可见,第一组 W/d_{max} =12 试件确定的 K_{IC} =1.38 MPa • m^{1/2}~2.24 MPa • m^{1/2}, f_{f} =7.16 MPa~8.61 MPa , 与第二组 W/d_{max} =28 试件的结果 K_{IC} =1.38 MPa • m^{1/2}~1.91 MPa • m^{1/2}, f_{f} =7.98MPa~9.67 MPa,基本一致。由于第一组试件 W/d_{max} 小于第二组,因此第一组试件的 β 取值范围(β = 0.8~2.0)小于第二组(β = 0.6~3.0)。对于岩石材料的设计应用,离散参数 β =1.0,即具有足够的预测精度。

3.2 试件缝高比α相同而尺寸 W 不同

a) 一级配混凝土试件(d_{max}=20 mm)

采用文献[22]的混凝土三点弯曲几何相似试件 为研究对象,初始缝高比 *α*=0.40,试件尺寸依次为 *S×B×W*=400 mm×120 mm×100 mm 、 600 mm× 120 mm×150 mm 、 800 mm×120 mm×200 mm 、 1200 mm×120 mm×300 mm 、 1600 mm×120 mm× 400 mm、2000 mm×120 mm×500 mm。混凝土试件 为一级配,骨料最大粒径 *d*_{max}=20 mm, *W*/*d*_{max} 依次 为: 5、7.5、10、15、20、25。

图 6 为 β =0.0、1.0、1.4 时回归分析得到一级配 混凝土材料的 K_{IC} 、 $f_{\text{i}} = a_{\infty}^*$ 。

β 取不同值时确定的一级配混凝土材料参数列 入表 5。文献[22]中实测立方体抗压强度 f_{cu} = 43.3 MPa,轴心抗压强度为 f_c =32.1 MPa,劈裂抗拉 强度 f_{ts} =2.99 MPa,由混凝土抗拉强度为抗压强度

27

的 $1/8 \sim 1/12^{[35]}$ 的比例关系可估计 $f_t = 3.6$ MPa~ 5.4 MPa。由双 K 模型计算峰值荷载对应的失稳韧 度 $K_{lc}^{un} = 1.033$ MPa·m^{1/2}~2.226 MPa·m^{1/2[22]}。由 表 5 可见 β 取 0.8~1.6,对于一级配混凝土材料性能 的预测都能得到较为合理的结果。为设计方便计, 离散参数 $\beta=1.0$,预测结果就具有足够精度。

图 6 由 a=0.40 试件确定一级配混凝土的 K_{IC} 、 f_t 及 a_{∞}^* Fig.6 Determination of K_{IC} , f_t and a_{∞}^* of concrete with one grading aggregates from specimens with a=0.40

表5	由α	相同而 W不同试件确定一级配混凝土的材料参数
Tal	ble 5	Results of material constant of concrete with one

grading aggregates from specimens with same α but different W

β	$K_{\rm IC}/({\rm MPa} \cdot {\rm m}^{1/2})$	<i>f</i> t/MPa	a^*_{∞} /mm
0.0	1.26	10.31	3.76
0.2	1.29	7.78	6.88
0.4	1.35	6.42	11.05
0.6	1.41	5.50	16.50
0.8	1.45	4.85	22.42
1.0	1.58	4.34	33.13
1.2	1.69	3.95	45.86
1.4	1.91	3.62	69.45
1.6	2.24	3.35	111.63
1.8	3.16	3.11	257.75
	2.0	-	

b) 湿筛混凝土试件(*d*_{max}=40 mm)

采用文献[22]的湿筛混凝土三点弯曲几何相似 试件为研究对象,初始缝高比 α=0.40,试件尺寸依 次为 *S×B×W*=800 mm×120 mm×200 mm,1000 mm× 120 mm×250mm , 1200 mm×120 mm×300 mm , 1600 mm×120 mm×400 mm。 骨料最大粒径 *d*_{max}= 40 mm, *W*/*d*_{max} 依次为 5、6.3、7.5、10。

图 7 为 β = 1.0、1.8 时,回归分析拟合得到湿 筛混凝土的 $K_{\text{IC}}, f_{\text{t}} \subseteq a_{\infty}^*$ 。

表 6。文献[22]中实测立方体抗压强度 *f*_{cu}=47.1 MPa~ 56.2 MPa,轴心抗压强度为 *f*_c=37.1 MPa~41.0 MPa, 表 6 α相同而 *W* 不同试件确定湿筛混凝土的材料参数

Table 6Results of material constant of sieved concrete from
specimens with same α but different W

β	$K_{\rm IC}/({\rm MPa} \cdot {\rm m}^{1/2})$	ft/MPa	a^*_{∞} /mm
	0.0	-	_
	0.2		_
0.4	1.01	9.53	2.82
0.6	1.01	6.38	6.31
0.8	1.04	4.99	10.84
1.0	1.07	4.17	16.43
1.2	1.10	3.61	23.27
1.4	1.15	3.19	32.67
1.6	1.24	2.87	46.58
1.8	1.35	2.62	66.41
2.0	1.49	2.40	96.11

劈裂抗拉强度 f_{ts} =2.70 MPa~3.14 MPa。由混凝土抗 拉强度为抗压强度的 1/8~1/12^[35]的比例关系可估计 f_t = 3.9 MPa~7.0 MPa 范围变化,综合考虑,所用湿 筛混凝土的 f_t 约为 2.7 MPa~5.0 MPa。由双 K 模型 计 算 峰 值 荷 载 对 应 的 失 稳 韧 度 K_{tc}^{un} = 1.449 MPa•m^{1/2}~1.936 MPa•m^{1/2}。由表 6 可见 β 取 0.8~1.6,对于湿筛混凝土材料性能的预测都能得 到较为合理的结果。为方便计,离散参数取定值即 β =1.0,预测结果即具有足够精度。

5 结论

现有的以连续介质力学理论为基础的断裂模型中,都未能考虑骨料粒径的重要影响,模型不能同时确定两个重要材料常数——断裂韧度与拉伸强度。本文及边界效应模型(BEM)的最新发展^[29-32],将材料参数——骨料最大粒径 *d*_{max} 引入断裂模型的解析表达式中。进而提出了由处于准脆性断裂状态三点弯曲试样,同时确定材料的断裂韧度 *K*_{IC}和拉伸强度*f*_t的理论与方法。本文研究得出如下结论:

(1) 尺寸效应模型(SEM)对于不同缝高比试件,须采用不同公式分别拟合数据,不能确定材料参数 $K_{IC} 和 f_t$ 。即使给出 $K_{IC} 和 f_t$,SEM也不能建立材料破坏预测曲线。SEM自1984年提出^[37],虽得到广泛应用^[4-5,32,28,38-39],但至今并未取得实质性进展,仍未能摆脱"数据曲线拟合"的束缚。SEM中包括4个方程多达15个拟合参数。而BEM只含1个方程。对给定的 $K_{IC} 和 f_t$,可建立预测材料破坏的设计曲线。另一方面,可由准脆性断裂试件的峰值荷载 P_{max} ,同时确定出材料参数—— K_{IC} 、 f_t 及 a_m^* 。

(2) 由于实验室条件下试件尺寸 W 与骨料最大 粒径 d_{max}的比值仅为 5~20,试件破坏呈现准脆性断 裂性质。考虑裂缝断裂机理,本文断裂模型中峰值 荷载对应的裂缝扩展量相关于骨料颗粒尺寸,即: Δa_{fic}=β·d_{max}。

(3) 离散参数 β 取值的不确定性恰恰确定的反映了混凝土与岩石类材料的内在特性。通过 β 的不同取值,可实现对材料断裂韧度和拉伸强度的准确预测。对于 $W/d_{max} < 20$ 的一般情况,为方便设计应用,离散参数 $\beta=1.0$,即 $\Delta a_{fc} = d_{max}$,预测结果就具有足够的精度,可满足设计要求。

通过水泥砂浆、混凝土(和湿筛混凝土)、岩石 等材料(d_{max}=1.2 mm~40 mm)对应的试验成果,验证 了本文所提理论与方法的合理性与适用性,即: a) 相同尺寸不同缝高比的试件的试验验证; b) 相同缝 高比不同尺寸的几何相似试件的试验验证。

参考文献:

- RILEM TC-50 FMC (Draft Recommendation). Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams [J]. Materials and Structures, 1985, 18(106): 285-290.
- [2] DL/T 5332-2005, 水工混凝土断裂试验规程[S]. 北京: 中国电力出版社, 2006.
 DL/T 5332-2005, Norm for fracture test of hydraulic concrete [S]. Beijng: China Electric Power Press, 2006. (in Chinese)
- [3] Hillerborg A, Modeer M, Petersson P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements [J]. Cement Concrete Research, 1976, 6(6): 773-782.
- [4] Hoover C G, Bažant Z P. Universal size-shape effect law based on comprehensive concrete fracture tests [J]. Journal Engineering Mechanics-ASCE, 2014, 140(3): 473-479.
- [5] Hoover C G, Bažant Z P. Comparison of Hu-Duan boundary effect model to size-shape effect law for quasi-brittle fracture based on new comprehensive fracture tests [J]. Journal Engineering Mechanics-ASCE 2014, 140(3): 480-486.
- [6] Jenq Y S, Shah S P. Two parameter fracture model for concrete [J]. Journal Engineering Mechanics-ASCE 1985, 111(10): 1227-1241.
- [7] 管俊峰,李庆斌,吴智敏.采用峰值荷载法确定全级 配水工混凝土断裂参数[J]. 工程力学,2014,31(8):8-13.
 Guan Junfeng, Li Qingbin, Wu Zhimin. Determination of fully grade, hydrophic generate fracture permeters by

fully-grade hydraulic concrete fracture parameters by Peak-load method [J]. Engineering Mechanics, 2014, 31(8): 8–13. (in Chinese)

- [8] Karihaloo B L, Nallathambi P. Effective crack model for the determination of fracture toughness (K_{1c}^e) of Concrete [J]. Engineering Fracture Mechanics, 1990, 35(4/5): 637-645.
- [9] Carpinteri A. Fractal nature of material microstructure and size effects on apparent mechanical properties [J]. Mechanics of Materials, 1994, 18(2): 89-101.
- [10] Xu S L, Reinhardt H W. Determination of doubledetermination of double-K criterion for crack propagation in quasi-brittle fracture Part I: experimental investigation of crack propagation [J]. International Journal of Fracture, 1999, 98(2): 111-149.
- [11] Xu S L, Reinhardt H W. Determination of double-K criterion for crack propagation in quasi-brittle fracture, Part II: Analytical evaluating and practical measuring methods for three-point bending notched beams [J]. International Journal of Fracture, 1999, 98(2): 151-177.
- [12] 徐世烺,余秀丽,李庆华. 电测法确定低强混凝土裂
 缝起裂和等效裂缝长度[J]. 工程力学, 2015, 32(12):
 84-89.
 Xu Shilang, Yu Xiuli, Li Qinghua. Determination of

Xu Shilang, Yu Xiuli, Li Qinghua. Determination of crack initiation and equivalent crack length of low strength concrete using strain gauges [J]. Engineering Mechanics, 2015, 32(12): 84-89. (in Chinese)

- [13] Wu Y, Xu S L, Li Q H, et al. Estimation of real fracture parameters of a dam concrete with large size aggregates through wedge splitting tests of drilled cylindrical specimens [J]. Engineering Fracture Mechanics, 2016, 163(9): 23-36.
- [14] Hu X Z, Wittmann F. Size effect on toughness induced by crack close to free surface [J]. Engineering Fracture Mechanics, 2000, 65(2/3): 209-221.
- [15] Hu X Z. An asymptotic approach to size effect on fracture toughness and fracture energy of composites [J]. Engineering Fracture Mechanics, 2002, 69(5): 555-564.
- [16] Hu X Z, Duan K. Size effect and quasi-brittle fracture: the role of FPZ [J]. International Journal of Fracture, 2008, 154(1): 3-14.
- [17] Li Qingbin, Deng Zongcai, Fu Hua. Effect of aggregate type on mechanical behavior of dam concrete [J]. ACI Material Journal, 2004, 101(6): 483-492.
- [18] Ohno K, Uji K, Ueno A, et al. Fracture process zone in notched concrete beam under three-point bending by acoustic emission [J]. Construction and Building Materials, 2014, 67(9): 139-145.
- [19] Guan Junfeng, Li Qingbin, Wu Zhimin, et al. Minimum specimen size for fracture parameters of site casting dam concrete [J]. Construction and Building Materials, 2015, 93(9): 973-982.
- [20] Guan Junfeng, Li Qingbin, Wu Zhimin, et al. Relationship between fracture parameters of site-casting and sieved concrete [J]. Magazine of Concrete Research, 2016, 68(1): 43-54.
- [21] 吴智敏, 徐世烺, 刘红艳, 等. 骨料最大粒径对混凝土 双 K 断裂参数的影响[J]. 大连理工大学学报, 2000, 40(3): 358-361.
 Wu Zhimin, Xu Shilang, Liu Hongyan, et al. Influence of maximum aggregate sizes on double-K fracture parameters of concrete [J]. Journal of Dalian University of Technology, 2000, 40(3): 358-361. (in Chinese)
- [22] 徐世烺,周厚贵,高洪波,等.各种级配大坝混凝土双 K 断裂参数试验研究——兼对《水工混凝土断裂试验 规程》制定的建议[J]. 土木工程学报, 2006, 39(11): 50-62.
 Xu Shilang, Zhou Hougui, Gao Hongbo, et al. An experimental study on double-K fracture parameters of concrete for dam construction with various grading

aggregates [J]. China Civil Engineering Journal, 2006, 39(11): 50–62. (in Chinese)

- [23] Elices M, Rocco C G. Effect of Aggregate size on the fracture and mechanical properties of a simple concrete
 [J]. Engineering Fracture Mechanics, 2008, 75(13): 3839-3851.
- [24] Lilliu G, van Mier J G M. 3D lattice type fracture model for concrete [J]. Engineering Fracture Mechanics, 2003, 70(7): 927-941.
- [25] 王娟,李庆斌,卿龙邦,管俊峰. 基于细观结构统计特征的混凝土几何代表体尺寸研究[J]. 工程力学, 2012, 29(12):1-6.
 Wang Juan, Li Qingbin, Qing Longbang, Guan Junfeng. Studies on representative volume element size of concrete based on meso-structure statistics [J]. Engineering Mechanics, 2012, 29(12):1-6. (in Chinese)
- [26] 王娟, 李庆斌, 卿龙邦, 管俊峰. 混凝土单轴抗压强度

三维细观数值仿真[J]. 工程力学, 2014, 31(3): 39-44. Wang Juan, Li Qingbin, Qing Longbang, Guan Junfeng. 3D simulation of concrete strength under uniaxial compressive load [J]. Engineering Mechanics, 2014, 31(3): 39-44. (in Chinese)

- [27] ASTM E399-12e2, Standard test method for linear-elastic plane-strain fracture toughness testing of high strength metallic materials [S]. American Society for Testing and Material, Philadelphia, 2013.
- [28] Çağlar Y, Şener S. Size effect tests of different notch depth specimens with support rotation measurements [J]. Engineering Fracture Mechanics, 2016, 157(3): 43-55.
- [29] Wang Y S, Hu X Z, Li L, et al. Determination of tensile strength and fracture toughness of concrete using notched 3-p-b specimens [J]. Engineering Fracture Mechanics, 2016, 160(7): 67-77.
- [30] Wang Y S, Hu X Z. Determination of tensile strength and fracture toughness of granite using notched three-point-bend samples [J]. Rock Mechanics and Rock Engineering, 2017, 50(1): 17–28.
- [31] 管俊峰, 胡晓智, 王玉锁, 李庆斌, 吴智敏. 用边界效应理论考虑断裂韧性和拉伸强度对破坏的影响[J]. 水利学报, 2016, 47(10): 1298-1306.
 Guan Junfeng, Hu Xiaozhi, Wang Yusuo, Li Qingbin, Wu Zhimin. Effect of fracture toughness and tensile strength on fracture based on boundary effect theory [J]. Journal of Hydraulic Engineering, 2016, 47(10): 1298-1306. (in Chinese)
- [32] Guan Junfeng, Hu Xiaozhi, Li Qingbin. In-depth analysis of notched 3-p-b concrete fracture [J]. Engineering Fracture Mechanics, 2016, 165(10): 51-71.
- [33] Tada H I, Paris P C, Irwin G R. The analysis of cracks handbook [M]. New York: ASME Press, 2000: 58-60.
- [34] 朱榆. 混凝土断裂及阻裂理论的研究[D]. 大连: 大连 理工大学, 2009.
 Zhu Yu. Studies on fracture and crack resistance of concrete [D]. Dalian: Dalian University of Technology, 2009. (in Chinese)
- [35] GB50010-2010, 混凝土结构设计规范[S]. 北京: 中国 建筑工业出版社, 2010.
 GB50010-2010, Code for design of concrete structures
 [S]. Beijing: Chinese Building Press, 2010. (in Chinese)
- [36] Yang S T, Hu X Z. Determination of size-independent fracture energy of granite using peak loads of beams [C]. Berkeley, California, USA: 9th International Conference on Fracture Mechanics of Concrete and Concrete Structures, 2016, 5: 125, doi: 10.21012/FC9.125.
- [37] Bažant Z P. Size effect in blunt fracture: concrete, rock, metal [J]. Journal of Engineering Mechanics, 1984, 110(4): 518-535.
- [38] 杜修力,张建伟,符佳,等. 钢筋混凝土构件的尺寸效应研究进展及展望[J]. 建筑科学与工程学报,2009,26(3):14-19.
 Du Xiuli, Zhang Jianwei, Fu Jia, et al. Research progress and prospect of size effect on reinforced concrete members [J]. Journal of Architecture and Civil Engineering, 2009, 26(3): 14-19. (in Chinese)
- [39] Li D, Jin L, Du X L, et al. Size effect tests of normal-strength and high-strength RC columns subjected to axial compressive loading [J]. Engineering Structures, 2016, 109(2): 43-60.